//VerilogA for passive,jointerbasic,veriloga `include "constants.vams" `include "disciplines.vams" module jointerbasic(Ipow1,Iphase1,Ilam1,Ipow2,Iphase2,Ilam2,Opow,Ophase,Olam); parameter integer modespec = 1 from [1:2]; parameter integer alpha_use_dBm = 1 from [0:1]; parameter real reffreq = 193.1e12 from (0:inf); parameter real l_str = 500e-6 from [0:inf); parameter real l_up = 500e-6 from [0:inf); parameter real l_down = 500e-6 from [0:inf); parameter real neff_te = 2.6 from (0:inf); parameter real neff_tm = 2.6 from (0:inf); parameter real n_gv_te = 4.2 from (0:inf); parameter real n_gv_tm = 4.2 from (0:inf); parameter real disper_te = 0; parameter real disper_tm = 0; parameter real attenu_te = 0 from [0:inf);//attenuation in dB/m parameter real attenu_tm = 0 from [0:inf);//attenuation in dB/m parameter real design_freq = 193.1e12 from (0:inf); parameter real s0_te = 0.5 from [0:1]; parameter real s0_tm = 0.5 from [0:1]; parameter real dfreq_te = 100e12 from [0:inf); parameter real dfreq_tm = 100e12 from [0:inf); parameter real ds_te = 0; parameter real ds_tm = 0; parameter real scat_loss_te = 0 from [0:inf); parameter real scat_loss_tm = 0 from [0:inf); input Ipow1,Iphase1,Ilam1,Ipow2,Iphase2,Ilam2; output Opow,Ophase,Olam; electrical Ipow1,Iphase1,Ilam1,Ipow2,Iphase2,Ilam2,Opow,Ophase,Olam; real freq,iph1,iph2; real eeir1,eeii1,emir1,emii1,eeir2,eeii2,emir2,emii2; real alpha_te,alpha_tm; real beta_ter,beta_tei,beta_tmr,beta_tmi; real s_te,s_tm; real t11r,t11i,t12r,t12i,t21r,t21i,t22r,t22i,t13r,t13i,t14r,t14i,t23r,t23i,t24r,t24i; real oer,oei,omr,omi; analog begin freq=`P_C/V(Ilam1); iph1=V(Iphase1)/360.0*2*`M_PI; iph2=V(Iphase2)/360.0*2*`M_PI; if (modespec == 1) begin eeir1=sqrt(V(Ipow1))*cos(iph1); eeii1=sqrt(V(Ipow1))*sin(iph1); emir1=0; emii1=0; eeir2=sqrt(V(Ipow2))*cos(iph2); eeii2=sqrt(V(Ipow2))*sin(iph2); emir2=0; emii2=0; end else if (modespec == 2) begin eeir1=0; eeii1=0; emir1=sqrt(V(Ipow1))*cos(iph1); emii1=sqrt(V(Ipow1))*sin(iph1); eeir2=0; eeii2=0; emir2=sqrt(V(Ipow2))*cos(iph2); emii2=sqrt(V(Ipow2))*sin(iph2); end if (alpha_use_dBm == 1) begin alpha_te=0.1*ln(10)*attenu_te; alpha_tm=0.1*ln(10)*attenu_tm; end else begin alpha_te=attenu_te; alpha_tm=attenu_tm; end beta_ter=2*`M_PI*reffreq/`P_C*neff_te+2*`M_PI/`P_C*n_gv_te*(freq-reffreq)-`M_PI*`P_C*disper_te/pow(reffreq,2)*pow(freq-reffreq,2); beta_tei=-alpha_te/2; beta_tmr=2*`M_PI*reffreq/`P_C*neff_tm+2*`M_PI/`P_C*n_gv_tm*(freq-reffreq)-`M_PI*`P_C*disper_tm/pow(reffreq,2)*pow(freq-reffreq,2); beta_tmi=-alpha_tm/2; if (freq < design_freq-dfreq_te/2) begin s_te=s0_te-dfreq_te/2.0*ds_te; end else if (freq > design_freq+dfreq_te/2) begin s_te=s0_te+dfreq_te/2.0*ds_te; end else begin s_te=s0_te+(freq-design_freq)*ds_te; end if (freq < design_freq-dfreq_tm/2) begin s_tm=s0_tm-dfreq_tm/2.0*ds_tm; end else if (freq > design_freq+dfreq_tm/2) begin s_tm=s0_tm+dfreq_tm/2.0*ds_tm; end else begin s_tm=s0_tm+(freq-design_freq)*ds_tm; end t11r=pow(10,-scat_loss_te/10)*sqrt(s_te)*exp(-beta_tei*(l_str+l_up))*cos(-beta_ter*(l_str+l_up)); t11i=pow(10,-scat_loss_te/10)*sqrt(s_te)*exp(-beta_tei*(l_str+l_up))*sin(-beta_ter*(l_str+l_up)); t12r=0; t12i=0; t21r=0; t21i=0; t22r=pow(10,-scat_loss_tm/10)*sqrt(s_tm)*exp(-beta_tmi*(l_str+l_up))*cos(-beta_tmr*(l_str+l_up)); t22i=pow(10,-scat_loss_tm/10)*sqrt(s_tm)*exp(-beta_tmi*(l_str+l_up))*sin(-beta_tmr*(l_str+l_up)); t13r=pow(10,-scat_loss_te/10)*sqrt(1-s_te)*exp(-beta_tei*(l_str+l_down))*cos(-beta_ter*(l_str+l_down)); t13i=pow(10,-scat_loss_te/10)*sqrt(1-s_te)*exp(-beta_tei*(l_str+l_down))*sin(-beta_ter*(l_str+l_down)); t14r=0; t14i=0; t23r=0; t23i=0; t24r=pow(10,-scat_loss_tm/10)*sqrt(1-s_tm)*exp(-beta_tmi*(l_str+l_down))*cos(-beta_tmr*(l_str+l_down)); t24i=pow(10,-scat_loss_tm/10)*sqrt(1-s_tm)*exp(-beta_tmi*(l_str+l_down))*sin(-beta_tmr*(l_str+l_down)); oer=t11r*eeir1+t12r*emir1+t13r*eeir2+t14r*emir2-t11i*eeii1-t12i*emii1-t13i*eeii2-t14i*emii2; oei=t11r*eeii1+t12r*emii1+t13r*eeii2+t14r*emii2+t11i*eeir1+t12i*emir1+t13i*eeir2+t14i*emir2; omr=t21r*eeir1+t22r*emir1+t23r*eeir2+t24r*emir2-t21i*eeii1-t22i*emii1-t23i*eeii2-t24i*emii2; omi=t21r*eeii1+t22r*emii1+t23r*eeii2+t24r*emii2+t21i*eeir1+t22i*emir1+t23i*eeir2+t24i*emir2; V(Olam) <+ V(Ilam1); if (modespec == 1) begin V(Opow) <+ pow(oer,2)+pow(oei,2); V(Ophase) <+ atan2(oei,oer)*360.0/(2*`M_PI); end else if (modespec == 2) begin V(Opow) <+ pow(omr,2)+pow(omi,2); V(Ophase) <+ atan2(omi,omr)*360.0/(2*`M_PI); end end endmodule